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A STEREOSELECTIVE SYNTHESIS OF VINYL ETHERS FROM a-ALKOXYALDEHYDES 

Glenn J. McGarvey,* Masayuki Kimura, and Andrew Kucerovy 

Department of Chemistry, University of Virginia 
Charlottesville, Virginia 22901 

Abstract: A general, stereoselective approach to vinyl ethers from a-alkoxyaldehydes is 
described which features a stereocontrolled tri-k-butylstannyl addition/ 
elimination sequence. 

In spite of the natural occurrence1 and demonstrated synthetic utility of vinyl ethers,2 

there are relatively few reports addressing a general preparation of these species.3'4 In 

our studies directed toward the synthesis of highly oxygenated natural products, we required 

access to a variety of substituted E- and L-vinyl ethers containing oxygen substituents 

which are not easily accommodated by present methods. Herein we report our initial studies 

directed toward developing a general, stereoselective synthesis of vinyl ethers. 

AS outlined in Scheme I, our strategy involves the elaboration of a-heteroatom substi- 
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Schema I. 

tuded aldeyhydes (1) into the desired vinyl ethers through an addition/anti-elimination 

sequence. Assuming strict stereoelectronic control in the elimination step (3a/b + 4a/b), 

the overall stereoselectivity of the route is governed by the selection observed in the 

addition step (l_+ 2a/b). This approach promises to satisfy our requirement for structural 

flexibility through the availability of a variety of compounds 1, while the intermediacy of 

adduct 2a/b should allow substantial variation in oxygen substitution (R*). Finally, this 

route is compatible with the sensitivity of the product vinyl ethers since the elimination 

may be induced under non-acidic conditions. 

We chose to implement this strategy using a-alkoxyaldehydes (l_, X=OR3), which may be 

readily obtained from a-amino acids, sa,b carbohydrates,5C and homologation of existing alde- 
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hydes,5d'e among other methods. Given the propensity of B-substituted stannanes toward 

elimination to form olefins6 and the encouraging stereoselectivity observed in the addition 

of stannyl anions to B-alkoxyaldehydes, 7 the use of Y=@usSn in the scheme was especially 

attractive. Scheme II outlines the approach we decided to investigate. 
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In view of previous observations,7 a particularly interesting facet of our study was 

the examination of the stereoselection realized in the addition of $usSnM species to 

a-alkoxyaldehydes. As indicated in the Table, a range of stannyl-metal species were exam- 

TABLE. 
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Elimination of the adducts of aldehyde 5c was accompanied by substantial decomposition - 

affording 8c/9c in an isolated yield of only 36%. 

Within the limits of NMR detection, the ratios of products Sand 2 accurately reflected 

the isomer ratios of adducts 5 and l0 

No condensation was observed when MgXz salts were used. 
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